

The Mechanism of the von Auwers **Rearrangement of Derivatives of** 4-Methyl-4-polyhalomethyl-1-methylenecyclohexa-2,5-diene

Sir:

The rearrangement of the "semibenzenes" I (X = $CHCl_2$ or CCl_3) and their derivatives to the aromatic isomers II, discovered by von Auwers,¹ has tentatively been assigned an ionic mechanism.² We now present evidence to show that, at least in the case of the acid³ III, the rearrangement involves a free-radical chain reaction.

The kinetics of the rearrangement of III to V have been measured spectrophotometrically in 20% (v/v) aqueous ethanol. The reaction exhibits a temperature-dependent induction period, and then obeys first order kinetics. From the change in length of the induction period with temperature between 130° and 152° an activation energy can be calculated for the initiation reaction of about 40 kcal./mole, which is of the expected order of magnitude.⁴ Addition of benzoyl peroxide reduces the induction period without affecting the subsequent reaction. The rearrangement is inhibited by duroquinone. Ultraviolet irradiation of a solution of the triene III in petroleum ether yields the rearranged acid V even at room temperature.

We conclude that the rearrangement proceeds by a reaction in which the chain-carrier is the

dichloromethyl radical. Other 4-halomethylsemibenzenes (I; $X = CCl_3$, CHBr₂, or CBr₃) appear to isomerize by an analogous process. The postulated intermediate radical IV is interesting, since it has the same electronic structure as the intermediate in radical aromatic substitution.

THE UNIVERSITY	C. W. Bird
Southampton	R. C. Cookson
England	

Received December 10, 1958

The Effect of Incorporated Cycloalkyl Rings upon the Rearrangement of Neophyl-like Radicals

Sir:

The generation of carbon radicals in solution in order to study their possible rearrangement is perhaps best achieved by the di-t-butyl peroxideinduced decarbonylation of the appropriate aldehydes.¹

Using this technique, we have investigated the rearrangement ability of some neophyl-like² radicals possessing incorporated cycloalkyl ring structures (I and II below).

The results indicate that the size of the ring present in such a radical affects its rearrangement ability appreciably. Little information on such a point seemed available heretofore.³

1-Phenylcyclopentylacetaldehyde (III, b.p. 106° at 1 mm., $n_{\rm D}^{20.5}$ 1.5352, d_4^{20} 1.065, Anal., Calcd. for C13H16O: C, 82.93; H, 8.57. Found: C, 82.69; H, 8.37. 2,4-DNP m.p. 132-133°, Anal., Calcd. for $C_{19}H_{20}N_4O_4$: N, 15.21. Found: N, 15.25) and 1phenylcyclohexylacetaldehyde (IV, b.p. 112° at 0.5 mm., $n_{\rm D}^{20}$ 1.5395, d_4^{20} 1.080, Anal., Caled. for

⁽¹⁾ K. v. Auwers and G. Keil, Ber., 36, 1861 (1903); K. v. Auwers and W. Jülicher, Ber., 55, 2167 (1922), and earlier papers.

⁽²⁾ R. L. Tse and M. S. Newman, J. Org. Chem., 21, 638 (1956).

⁽³⁾ K. v. Auwers, Ber., 44, 588 (1911).

⁽⁴⁾ C. Walling, Free Radicals in Solution, John Wiley and Sons, Inc., New York, 1957, Chap. 2; W. A. Roth, Z. Elektrochem., 16, 658 (1910).

⁽¹⁾ Among others, S. Winstein and F. H. Seubold, Jr., J. Am. Chem. Soc., 69, 2916 (1947); W. H. Urry and N. Nicolaides, J. Am. Chem. Soc., 74, 5163 (1952); D. Y. Curtin and M. J. Hurwitz, J. Am. Chem. Soc., 74, 5381 (1952); and F. H. Seubold, Jr., J. Am. Chem. Soc., 75, 2532 (1953).
(2) The neophyl radical itself is C₆H₅C(CH₃)₂CH₂.

⁽³⁾ M. A. Muhs, dissertation (University of Washington, 1954), quoted in H. Breederveld and E. C. Kooyman, Rec. trav. chim., 76, 305 (1957), has noted no rearrangement in radicals analogous to I and II with a methyl group in place of the phenyl group. Thus far alkyl groups have never been observed to rearrange in decarbonylation reactions.